Assignment 3 Solution

$30.00 $24.00

Write code that finds a maximum flow in a directed graph, using the Ford-Fulkerson algorithm. The graph is given as adjacency matrix with cap[i][j] being the capacity of the directed edge from i to j. The function received another argument, the matrix flow[][], which is used to return the flow values in the maximum flow…

5/5 – (2 votes)

You’ll get a: zip file solution

 

Description

5/5 – (2 votes)

Write code that finds a maximum flow in a directed graph, using the Ford-Fulkerson algorithm. The graph is given as adjacency matrix with cap[i][j] being the capacity of the directed edge from i to j. The function received another argument, the matrix flow[][], which is used to return the flow values in the maximum flow from s to t void maximum flow(int n, int s, int t, int *cap, int *flow)

Your function has the following arguments:

  • n: the number of vertices of the graph,

  • s: the start vertex,

  • t: the target vertex

  • cap: the matrix of edge capacities.

  • flow: the matrix used to return the maximum flow.

The vertices are numbered from 0 to n-1, so s and t are numbers in that range. capacity, flow are a pointers to n × n matrices of nonnegative integers; in standard C the size of a matrix cannot be a variable, so we use pointer arithmetic, and treat the matrix as a one-dimensional matrix. The array element cap[i][j] can be accessed as *(cap + i*n + j). Your function should return in the matrix flow the flow values of the maximum flow from s to t. The flow variable of your function points to space allocated for the flow matrix.

Your function will need at least the following auxiliary arrays:

  • an n × n matrix to hold the current flow,

  • an n × n matrix to hold the current residual capacities,

  • an array to maintain which vertices are already visited in the search of an augmenting

path from s to t with positive residual capacity.

You have to allocate the auxiliary arrays. You can use either BFS or DFS for the search of the augmenting path.

Assignment 3 Solution
$30.00 $24.00